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The simplest power curves model wind power only as a function of the wind speed at the turbine hub height.
While the latter is an essential predictor of power output, wind speed information in other parts of the vertical
profile, as well as additional atmospheric variables, are also important determinants of power. The goal of
this work was to determine the gain in predictive ability afforded by adding wind speed information at other
heights, as well as other atmospheric variables, to the power prediction model. Using data from a wind farm
with a moderately complex terrain in the Altamont Pass region in California, we trained three statistical
models—a neural network, a random forest and a Gaussian process model-to predict power output from
various sets of aforementioned predictors. The comparison of these predictions to the observed power data
revealed that considerable improvements in prediction accuracy can be achieved both through the addition
of predictors other than the hub-height wind speed and the use of statistical models. To our knowledge,
the use of the Gaussian process model in this context is new, in contrast to neural networks and random
forests. The advantage of this model over the other two models is that it provides a much more natural way
to estimate the uncertainty associated with its predictions. In addition, this study presents one of the most
comprehensive analyses to date of the relative importance of various wind power curve inputs.
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model power production of a wake-free leading-row tur-

As the United States and other countries set increas-
ingly ambitious wind energy production goals, an abil-
ity to produce reliable wind power forecasts is becoming
more and more critical'. To be valuable, a forecasting
tool must not only produce accurate point forecasts of
power, but also correctly quantify the uncertainty asso-
ciated with these point predictions. Statistical analysis
and modeling are essential for designing a forecasting sys-
tem that has both of these features.

Wind power forecasting involves converting atmo-
spheric forecasts into a forecast of power output from an
individual turbine or a set of turbines (e.g., all the tur-
bines in a wind park). Even if a perfect atmospheric fore-
cast were available, the model relating it to wind power
is far from obvious. The most basic power curves model
turbine power output as a cubic function of the wind
speed at turbine hub height, assuming standard values
of turbulence intensity and adjusting for air density in a
simple fashion. This is a great oversimplification of real-
ity. Although hub-height wind speed is essential, other
variables, such as wind speeds in other parts of the verti-
cal profile, atmospheric stability and wind veer can also
be important determinants of wind power output?.

Our aim is to develop more accurate power curves
through the use of statistical modeling. In particular, we
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bine in the hilly Altamont Pass region of California. We
consider various sets of inputs beyond hub-height wind
speed, including wind speed information in the entire
profile of the rotor disk and wind veer. We also compare
adding air density explicitly in the model to the standard
industry practice of applying an air density adjustment
to the wind speed. We evaluate three statistical models
as approximations for the power curve, or the function
relating these inputs to wind power output: neural net-
works (NN), random forests (RF) and Gaussian process
models (GPM).

Besides potentially improving power forecast accuracy,
statistical models have an additional advantage of quan-
tifying the uncertainty associated with the forecast. This
is in stark contrast to the deterministic nature of more
traditional power curves as those only provide point fore-
casts. As will be discussed in Section V, the GPM, which
has not been previously explored in the context of wind
forecasting, is particularly well suited for this purpose.
The capability to quantify power forecast uncertainty can
be of tremendous value: for example, utilities companies
can greatly benefit from this feature when they determine
unit commitment schedules®®.

Il. LITERATURE REVIEW

The simplest way to predict power generation of a spe-
cific turbine is to use a turbine manufacturer-supplied
power curve (MPC). MPCs usually model power output
as a function of mean hub-height wind speed, averaged
over a 10-minute interval and adjusted for non-standard



air density and sometimes for a range of turbulence in-
tensities. In complex terrain, these curves can become
especially inaccurate because a significant portion of the
rotor-disk flow is not horizontal and steady, as assumed
by the curves, but instead includes upflow or downflow,
as well as significant turbulence®?®. At the same time,
in many parts of the globe, wind farms are increasingly
being built in areas of complex terrain to take advantage
of accelerated flows along ridgelines and on the crest of
hills.

Studies have shown that variation in atmospheric con-
ditions, including turbulence intensity, wind shear and
wind veer, can lead to changes in power output of 10%
or more for a given hub-height wind speed?° 16, thus
making a strong case for supplementing hub-height wind
speed with these variables in the model for power. We
thus pursue two avenues for improvement over the basic
power curves: first, supplementing the hub-height wind
speed with other atmospheric variables as inputs to the
power curve and second, using statistical models to ap-
proximate the power curve.

Our work builds upon a growing body of literature ex-
ploring one or both of these directions. One of the most
recent examples is the use of an RF model to predict
wind power output of a 1.5-megawatt (MW) turbine!S.
The authors simulated both the wind field inputs and
the corresponding power output and compared predic-
tions from an RF model to those of a traditional power
curve method discussed earlier. They found that adding
wind shear and turbulence intensity as predictors to the
10-minute average hub-height and using an RF resulted
in up to a three-fold reduction in prediction error rela-
tive to the traditional power curve method. Similarly, in
Ref. 17, the authors used simulated data to compare RFs
to the method of binning and a physics-based model (one
suggested in a 2013 draft revision of IEC 61400-12-1) and
found RFs to be the most accurate.

RFs are also explored in Ref. 18, where they are com-
pared to a number of other statistical models, including
neural networks (discussed below), support vector ma-
chines and linear regression, as well as to the persistence
model, in terms of their performance in predicting hourly
power averages at time horizons ranging from 1 to 60
hours, at three different wind parks in France. The au-
thors used forecast wind speed at 50 meters above ground
and wind direction as input variables and found that
the RF tended to have the best performance of all the
models, yielding up to a three-fold reduction in normal-
ized root-mean-squared error relative to the persistence
model. Because this work and the studies in Refs. 16 and
17 suggest that RF's are a promising forecasting tool, we
explore them in our work, as well.

A statistical model that is much more commonly en-
countered in wind power forecasting literature than an
RF is the NN, In some cases, such as in Ref. 20, NNs
are first used to forecast wind speed, and this forecast is
then converted to a power forecast using the traditional
MPCs. Alternatively, NNs are employed to model power

output directly. For example, in Ref. 21 the authors de-
scribe using an NN to learn the relationship between at-
mospheric variables, such as wind speed, air pressure and
temperature, and the power output, both for long- and
short-term forecasting. In Ref. 22, an NN is developed
to produce short-term forecasts of power at a given site
using wind speed at the site and neighboring locations.
The authors found up to 24% error reduction compared
to the persistence model. In Ref. 23, power predictions
at an individual turbine using an NN with wind speed
and direction as inputs were associated with up to a ten-
fold reduction in percent error relative to the traditional
model. We explore NNs in this work, both because of
their prominence and predictive skill advantage relative
to traditional models.

In Ref. 24, on the other hand, the authors use condi-
tional kernel density (CKD) estimation to forecast wind
power given the distribution of wind speed forecasts.
They first use time series modeling to produce forecast
distributions of the hub-height wind speed and then CKD
to model the uncertainty in the power curve given the
wind speed forecast. By handling both of these sources
of uncertainty, they establish a powerful modeling frame-
work. We did not consider this type of an approach in
our work, however, because density estimation becomes
increasingly challenging as the number of variables grows,
and we wanted to explore a much greater set of inputs to
the power curve than the hub-height wind speed.

Time series modeling has also been frequently used to
forecast wind power directly, with Refs. 25-27 being just
a few of the examples. Furthermore, Ref. 28 gives a com-
prehensive survey of space-time modeling in wind power
forecasting, which incorporates information at nearby lo-
cations in addition to power observed at the location of
interest in recent past. In Ref. 29, a Markov chain model
is used to predict the change in power 1 hour ahead. Al-
though these types of models can be quite successful, they
are typically only useful for very short-term forecasting
(up to only a few hours). Moreover, our immediate aim in
this work is not to develop an operational power forecast-
ing model, but rather to gain a better understanding of
the relationship between power and its key atmospheric
determinants. Thus, we did not consider time series or
space-time models in this work.

Compared to the studies mentioned above, in our work
we consider a wider range of input variables (discussed
in Section IV) and an additional class of models, GPMs
(discussed in Section V), which we have not encountered
in wind power forecasting literature so far.

I1l. DATA

In June 2012, a vertically-profiling, ground-based
Doppler LIght Detection and Ranging (lidar) instrument
(Wind Cube v2, Leosphere, Orsay France) was deployed
at a wind farm in the Altamont Hills region of California
for a 2-month field campaign. The wind farm consists of
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FIG. 1. The MPC (power in MW vs. hub-height wind speed
in m/s) for the MWT62-1000A turbine used in the study®’,
with the vertical lines indicating the cut-in, rated and cut-
out speeds listed in Table I and Roman numerals labeling the
three regions of the power curve defined by these speeds.

38 1-MW Mitsubishi (MWT62-1000A) blade-pitch con-
trolled turbines. The turbine specifications are listed in
Table I, and the corresponding MPC is shown in Fig. 1.

TABLE I. Specifications of the MWT62-1000A turbines used
in the study®°.

Wind class IEC Class ITA ||Hub height 55 m

Cut-in speed |3 m/s Rotor diameter |61.4 m
Rated speed [12.5 m/s Blade length  {29.5 m
Cut-out speed |25 m/s Rated power |1 MW

The lidar collected continuous wind flow measurements
from June 7 to August 24, 2012, resulting in nearly 2,000
hours of archived data. The summer period was chosen
because it is the peak wind season for this area due to
strong sea breezes. The lidar provided measurements of
wind flow in the streamwise, crosswind, and vertical di-
rections at 12 measurement heights from 40 to 150 meters
above ground level (a.g.l.) in steps of 10 meters with a
probe volume of 20 meters and sampling frequency of 1
Hz. The data were averaged over 10-minute intervals to
calculate the mean and standard deviation of the hori-
zontal and vertical wind speeds, as well as wind direction
at each sampling height. The data were also quality-
controlled for signal-to-noise ratio and availability: data
points with carrier-to-noise ratio (CNR) below -23 and
availability less than 25% during each 10-minute aver-
aging period were discarded. Wind speed uncertainty
is estimated to be 3-5% for moderately complex terrain
sites3!.

The Supervisory

Control and Data Acquisition

(SCADA) system provided 10-minute averages of ground-
level air density, hub-height wind speed and power output
for all turbines, for the same 10-minute intervals as the
lidar data. The SCADA data also contained other statis-
tical summaries, including standard deviations, for these
10-minute intervals. Wind speed was measured with a
nacelle-mounted cup anemometer (NRG #40, NRG Sys-
tems, Inc., Vermont, USA) at a frequency of 1 Hz.

The landscape surrounding the wind farm is moder-
ately complex. The predominant wind direction is from
the southwest during the summer, as shown in Fig. 2.
The terrain’s influence on the wind patterns at the site
is described in detail in Ref. 32. Because the turbines
are located on a ridgeline with a slope of 10 degrees, the
lidar had to be placed at a lower elevation to capture in-
flow conditions at a distance close to 2—4 rotor diameters
(D), as recommended by the International Electrotech-
nical Commission (IEC)33. Of all the heights measured
by the lidar, the 10-minute wind speed averages of lidar
measurements at 90 meters had the highest correlation
and the smallest root-mean-squared error (RMSE) rel-
ative to the corresponding nacelle wind speed averages
(correlation = 0.94, RMSE = 0.84 m/s). Fig. 3 shows
the distribution of the differences between the nacelle
and the 90-meter lidar wind speed means. The nacelle
wind speed exceeds the lidar measurement by 0.4 m/s on
average, indicating the frequent occurrence of accelerated
flows at the top of the ridge. These flows, known as “hill
speed-ups,” are discussed in detail in Ref. 32.

The examination of the wind rose at 90 meters (shown
in Fig. 2) revealed that of the downwind turbines, tur-
bine #8 (T8) had the highest frequency of being directly
downwind of the lidar. Further analysis was therefore
limited to this turbine. Fig. 4 shows the setup of the li-
dar and T8 turbine. As Fig. 2 shows, wind directions in
the range 225°-250° were ideal for the lidar to capture
inflow conditions seen by T8, so the data were restricted
to these wind directions. The data were further limited
to the time periods without any missing SCADA data.

In this study, we focused only on the 90-meter wind
speeds that correspond to region II, or the portion of
the power curve where power is most sensitive to small
changes in wind speed. For an MPC, this corresponds to
the range between the cut-in and the rated hub-height
wind speeds, i.e., between 3 m/s and 12.5 m/s in our
study, as can be seen from Table I and Fig. 1. Since our
data are 10-minute averages, we adjusted this range so
that the observed 10-minute power averages are largely
constant (very close to 0 or rated power) outside the cho-
sen limits and are thus minimally contaminated by ob-
servations from regions I and III. This adjustment led us
to restrict the data to 90-meter average speeds between
3.5 m/s and 11.5 m/s (see Fig. 5). This and all the other
filters discussed above resulted in 1737 data points, each
representing a 10-minute period of lidar wind flow and
power data.



FIG. 2. Wind rose showing the distribution of wind
direction (degrees) at 90 meters above ground level
for the campaign period, as measured by the lidar.
The figure also shows the location of T8 turbine in
relation to the lidar (in red).
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FIG. 3. The distribution of the differences between the nacelle and
the 90-meter lidar wind speed means (m/s), with a positive difference
implying that the nacelle mean is the larger of the two (RMSE = 0.84
m/s, correlation = 0.94).
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FIG. 4. The setup of the lidar and the T8 turbine relative to one another. The lidar was located 3.6 rotor diameters (D)

upwind of T8.

IV. INPUTS TO THE POWER CURVE MODEL

A. Traditional power curve inputs

Traditional power curves model the expected 10-
minute average of power for a given 10-minute average
of the hub-height wind speed. These curves are typically

generated assuming the sea-level air density (or standard
air density) of 1.225 kg/m®. However, in areas of high
elevation or exposure to large air temperature ranges, air
density may differ substantially from this value at any
given time. To account for this potential discrepancy be-
tween the observed and the standard air densities p and
po, the IEC recommends adjusting the 10-minute aver-
age of the hub-height wind speed U for the observed air
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FIG. 5. Ten-minute average power (MW) at turbine T8
vs. 10-minute average wind speed (m/s) measured by the lidar
at 90 meters above ground (black circles). Also shown are the
data filters described in Section III, the predictions using the
MPC and the bias-corrected MPC (see Section VII), and the
data-smoothed power curve as a function of the wind speed
mean at 90 m (see legend).

density p and plugging this density-adjusted value Ug.qq;
into the power curve model.

The recommended adjustment is given by

Ugaty = U (") v (1)

Po

and is based on the following first principle-based model
for power output P at a given time point:

P = AC,pU?, (2)

where A is the area of the turbine’s rotor disk, C), is the
power coefficient at that time point, and p and U are as
above®!. Rewriting Eq. (2) in terms of py yields

1/3
( )
pO

resulting in the adjustment in Eq. (1). Note that apply-
ing this adjustment to 10-minute averages of hub-height
wind speeds implicitly assumes that air density tends to
be constant over a 10-minute period. As discussed in
Section II, the model in Egs. (2) and (3) is an oversim-
plification of reality, both because it uses a very limited
set of inputs and because it assumes a very particular
relationship between these inputs and power.

3

P =AC,po = ACppOUgadjv (3)

B. Expanded set of power curve inputs

Our goal is to determine the gain in predictive ability
afforded by adding information other than the density-
adjusted hub-height wind speed to the model, as well as
by assuming less constrained forms of the relationship
between these inputs and power. In particular, the data
described in Section IIT allowed us to examine the value of
including wind speed means and standard deviations at
heights other than the hub height, as well as adding wind
veer to the model. In addition, we explored using air
density explicitly in the model, by including it in addition
to the unadjusted wind speed, instead of using the density
adjustment in Eq. (1) prescribed by the model in Egs. (2)
and (3).

These additional variables were considered because, as
discussed in Section II, they or quantities very closely re-
lated to them have been shown through various studies
to be among the most important atmospheric factors for
wind power production after the hub-height wind speed.
For example, wind shear is captured by including the
wind speed profile and wind veer in the model. Sim-
ilarly, the information conveyed by turbulence intensity
is represented by including the means and standard devi-
ations at the hub height and other heights of the vertical
profile.

The studies cited in Section II also identified wind di-
rection, temperature and pressure as important inputs
to the power forecast model. Although we did not use
wind direction directly as an input in our study, it was ac-
counted for indirectly by using only the data correspond-
ing to the range of directions favorable to the turbine to
build our models, as explained in Section III. Likewise,
we did not consider temperature and pressure because by
including the air density, we largely capture the informa-
tion in these two quantities.

1. Wind speed inputs

Although the SCADA data provided wind speed mea-
surements taken at the nacelle of the turbine, these mea-
surements can deviate from the true inflow conditions
because the cup anemometer is subject to flow distortion
from the blades and the nacelle hub. Consequently, we
considered lidar measurements of free-stream wind speed
rather than the nacelle measurements as the baseline in
this study. The appropriateness of using the former as
the baseline is discussed in more detail in Section VII.

Recall from Section III that lidar wind speed averages
measured at 90 meters were in highest agreement with
the wind speed averages observed at the nacelle. As a
result, measurements at this height were considered a
proxy for free-stream wind speed. The distribution of
these measurements is shown in Fig. 6(a).

First, we modeled the power output at T8 as a func-
tion of density-adjusted wind speed variables (using the
adjustment in Eq. (1)) alone. One way to include infor-
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mation about the entire vertical profile of wind speeds is
to estimate the average inflow seen by the entire rotor
disk of the turbine. This can be done using the rotor-
equivalent wind speed (REWS), defined in Ref. 35 as

9 H+4r

REWS = —

U(z)(r? — H? +2Hz — 2°)Y%dz, (4)
A H—r

where A is the area of the rotor disk, H is the turbine hub
height, r is the rotor disk radius, U(z) is the mean wind
speed at height z, and dz is the height interval at which
the wind speed measurements are taken. Note that this is
just the weighted average of the mean wind speeds in each
height interval across the rotor disk, where the weight
for each interval is equal to the area occupied by the

interval as the fraction of the total area of the rotor disk.
Since we used lidar measurements at 90 m as a proxy
for free-stream wind speed, and the rotor disk radius for
T8 is 30.7 m, the REWS in our case corresponded to the
weighted average of lidar measurements from 60 to 120
meters above ground.

Fig. 6(b) shows the distribution of the differences be-
tween the 10-minute average wind speed at 90 meters and
the REWS. It reveals that the magnitude of these differ-
ences tends to be small: for 74% of the observations the
absolute difference is within 0.05 m/s. This is because, as
can be seen from Fig. 6(c), the magnitude of wind shear
is frequently very low at this site. Wind shear is defined
as the value of « in the power-law profile of wind speed
U(z) as a function of height z: U(z) = fz*.

In addition to collapsing the vertical profile of lidar
wind speed means into a scalar quantity such as REWS,
we also explored the value of including the entire profile
in the model directly. Moreover, we studied the effect of
supplementing this profile with the profile of wind speed
standard deviations, as these provide estimates of turbu-
lence in the mean wind flow.

Turbulence can contribute valuable information about
wind power production. On the one hand, it can en-
hance power production since turbines extract power
from turbulence, as well as the mean wind flow, as seen
in Ref. 2. On the other hand, its impact on power
production can be negative because strong, intermittent
bursts of turbulence, including coherent structures pro-
duced underneath a nocturnal low-level jet, can put high
fatigue loads on the turbine’s components and alter tur-
bine response3®. For reference, the distribution of one
of the most commonly used measures of turbulence, the
turbulence intensity (TI), is shown in Fig. 6(d). It is de-
fined as the ratio of the standard deviation to the mean
of wind speeds in a 10-minute period at a given height
(90 meters in the plot). Note that the MPC in Fig. 5
was generated assuming the TT of 10%, whereas Fig. 6(d)
shows that for an overwhelming majority of observations
(94%), it exceeds this value. High TT values are common
in moderately complex terrain.

As was previously done with the 90-meter wind speed
mean, we applied the density adjustment in Eq. (1) to the
entire vertical profile of means. In addition, following the
aforementioned assumption that air density is constant
over a 10-minute period, the 10-minute standard devia-
tions were adjusted in a similar manner:

p o\ 1/3
1.225) ' (5)

Consequently, we explored the following five sets of
wind speed variables, all adjusted for air density and
henceforth collectively referred to as Group 1 (the paren-
theses after each input set contain the label used for that
set in the plots in Section VII):

SDg.aq;(U) = SD(U) (

1. Wind speed mean at 90 meters (ws 90m mean),

2. Wind speed mean at 90 meters + standard devia-
tion at 90 meters (ws 90m mean + sd),



3. Rotor-equivalent wind speed, defined in Eq. (4) (ws
equiv),

4. Entire profile of wind speed means at the 12 heights
(40, 50, ..., 150 meters) (ws all mean) and

5. Entire profile of wind speed means + entire profile
of wind speed standard deviations at the 12 heights
(ws all mean + sd).

Note that the first set in the above list corresponds to
our baseline method of modeling power as a function of
the density-adjusted wind speed at the hub height alone.
The other sets, on the other hand, include additional
information, either in the form of the temporal variability
in the wind speed (set 2) or wind speeds measured in
other parts of the profile (sets 3 and 4), or both (set 5).

Furthermore, because the dimensions of the last two
sets above are quite large (12 and 24 for sets 4 and 5,
respectively) and the wind speeds at various heights are
highly correlated (correlation values range between 0.91
and 0.98), these two sets were also subjected to a princi-
pal component analysis (PCA, see Ref. 37) in order to re-
duce their dimensions, thereby greatly simplifying fitting
of the statistical models discussed in Section V. The top
components that together accounted for at least 99% of
the total variance were retained. Note that the aforemen-
tioned Group 1 of input sets includes the PCA-reduced
versions of sets 4 and 5.

2. Additional atmospheric inputs

The data revealed that 10-minute wind direction av-
erages can be quite variable across the vertical profile,
motivating the inclusion of wind veer as an input. A
large amount of wind veer in these data is not surprising
because in complex terrain, local hills and valleys can cre-
ate distinct flow features, especially at heights closer to
the ground. We used the circular standard deviation (see
Ref. 38) of all wind direction averages measured by the
lidar in the 40-90 meter height range as a way to quantify
wind veer. This range was used because wind direction
averages at these heights had much higher circular cor-
relations (see Ref. 38) with the nacelle wind direction
average than those at the other heights. Fig. 6(e) shows
the frequency distribution of wind veer defined in this
way. As can be seen from it, although wind veer tended
to be small most of the time, it was sizable for a non-
negligible fraction of observations. Hence, to account for
the potential effect of wind veer on power, we added it to
each of the input sets in Group 1, thus creating another
group of input sets, referred to as Group 2.

In addition to the wind flow across the rotor disk, the
density of air is the other key factor affecting the amount
of kinetic energy available for extraction from a turbine.
To account for the effect of air density on power, in ad-
dition to using the standard air density adjustment in
Eq. (1), we also considered the approach of adding the

10-minute air density average at ground level as a sepa-
rate input to the unadjusted versions of each of the input
sets in Group 1, thus creating Group 3. The frequency
distribution of air density values, shown in Fig. 6(f), re-
veals that all observed densities were smaller than the
standard value of 1.225 kg/m?, with a large fraction be-
ing considerably smaller than this value as a result of
the wind farm’s elevation. Thus, air density is expected
to be an important factor for determining power at this
location.

Finally, Group 4 of input sets was created by adding
both wind veer and air density to the unadjusted wind
speed input sets in Group 1. The four groups thus re-
sulted in a total 4 x 5 = 20 input sets. The variables
included in each group are summarized in Table II.

TABLE II. Summary of the power model input variable com-
binations considered in our analysis. An “x” under a variable
name indicates its inclusion in the group. Each group consists
of 5 sets, made up of the wind speed variables enumerated in
Section IV B 1 (referred to collectively as “Wind speed” in the
table) and all of the variables marked with an “x”. Note that
in Groups 1 and 2 the air density adjustments in Egs. (1) and
(5) are applied to the wind speed variables, while no adjust-
ment is applied to these variables in Groups 3 and 4.

Group Input variables
Wind speed | Wind veer [ Air density
1 X
2 b'd b'e
3 X X
4 X X X

V. STATISTICAL MODELS

Basic power curve models cannot accommodate in-
put sets that include variables other than the density-
adjusted hub-height wind speed, motivating the use of
statistical models to predict power for the more complex
input sets. Moreover, even in the absence of the addi-
tional input variables, a statistical model has two advan-
tages alluded to earlier. One advantage is that it does not
assume a particular relationship between the inputs and
the output, as these relationships can be learned by the
model from the data. Another is that statistical models
provide an estimate of the uncertainty associated with
the predictions.

We compared three statistical models in terms of their
ability to predict power output using each of the input
sets described in Section IV. These were NNs, RFs and
GPMs. While the reader is referred to Refs. 39 and 40,
Refs. 40 and 41, and Refs. 4244 for a detailed treatment
of NN, RF and GPM, respectively, Appendix A gives
basic details of each model.

The statistical software R*® was used to train all three
models. Each of the models requires the user to spec-
ify certain parameters. As discussed in more detail in



Appendix A, for some of these parameters we used well-
established default values or functional forms, while oth-
ers were determined using cross-validation or maximum
likelihood estimation. In addition, as described in more
detail in Appendix A 3, we used two different forms of
the mean function for the GPM: a constant and a natu-
ral spline. These will be referred to in the remainder of
the paper as GPM-c and GPM-ns, respectively.

While NN and RF can be very powerful prediction
tools (as discussed in Section II), the GPM provides a
much more natural framework for modeling prediction
uncertainty. This was the primary motivation for includ-
ing the GPM in the analysis because, as mentioned in
Section I, the capability to produce accurate uncertainty
estimates associated with point predictions is a highly
desirable feature in a wind power forecasting tool.

The GPM models the joint distribution of all the ob-
served and predicted response values as a multivariate
Gaussian random variable, providing a well-established
probabilistic framework for the entire distribution of pre-
dictions. This leads to straightforward inference about
forecast uncertainty, quantiles and tail probabilities, and
at a modest additional computational cost relative to
that required to get the point predictions themselves. In
contrast, NN and RF model the response quite differ-
ently from the GPM: being regression models, they treat
each response value as conditionally independent of the
other response values given the parameters. In addition,
the conditional distribution of the prediction given the
parameters is not easily tractable for NN and RF (un-
like linear regression, for example). Consequently, there
is no theoretical foundation for exact probabilistic infer-
ence for NN and RF predictions, and one must resort
to approximations-based on bootstrap (as in the case of
NN) or an empirical distribution of predictions in the
ensemble (as in the case of RF)-to provide estimates of
prediction uncertainty.

At the same time, we must also note a disadvantage
of GPM over the other two models: it is not as scalable
as NN and RF in terms of the number of predictors it
can accommodate easily. If the predictor set is large,
training GPM is more computationally expensive than
NN and RF and becomes infeasible at smaller thresholds
than the other two models. However, since training of the
model can be done offline, as long as it is feasible, the time
required to train the model does not pose a great concern
(for reference, the largest input set in this study consisted
of 27 predictors, and none of the sets encountered the
infeasibility issue). In addition, as discussed in Section
IV, dimension reduction tools, such as PCA, can be used
to make the size of the predictor set more manageable
for the GPM.

There was evidence of slight heteroscedasticity, or non-
constant variance of power as a function of the inputs, in
the data. Consequently, we also explored a variant of the
Gaussian process model, a treed Gaussian process model
(TGP), because it is able to identify different variance
regions in the data and model them separately, thus ac-

counting for heteroscedasticity*®47. However, the TGP
results were practically the same as those for GPM, and
since the computational burden of TGP is considerably
higher than that of GPM, it was not considered further.

VI. PERFORMANCE STUDY

To assess the performance of each of the sets of in-
puts and the three statistical models outlined above, the
1737 observations consisting of the lidar and SCADA
data were randomly divided into two mutually exclusive
sets of 869 and 868 points, the first of which was used to
train each of the models with each of the input sets in
each group. For comparison, using the same training set,
we also trained each of the statistical models with the 10-
minute mean and standard deviation of the nacelle wind
speed as inputs.

Each combination of the trained model and input set
was then used to make wind power predictions for the
remaining 868 points in the data, and these predictions
were compared to the observed wind power values for
these points (henceforth referred to as the validation set).
In addition, we obtained predictions of power using the
MPC3? (shown in Fig. 1) using the same training and
validation sets.

This experiment of partitioning the data, training the
models with the training set and making predictions for
the validation set was repeated a total of 30 times to
obtain a representative set of results. For each exper-
iment and model/input set combination, the RMSE of
10-minute average wind power predictions relative to the
actual SCADA data was computed as a metric of pre-

dictive skill. The RMSE for the ith experiment is given
by

>3 (P — Piy)?
RMSE; = 1= , 6
\/ 868 (6)
where P;; and P, are the actual and predicted power

value, respectively, for the jth observation in ith experi-
ment’s validation set with ¢ =1,...,30 and j =1, ..., 868.

VIlI. RESULTS AND DISCUSSION
A. Wind speed inputs

We first consider the results for the input sets involv-
ing only the wind speed variables (Group 1). Fig. 7(a)
shows the RMSEs for the 30 experiments described in
Section VI using lidar measurements of the wind speed
as inputs to each of the statistical models. Also shown
in the plot are the RMSEs for the predictions obtained
using the bias-corrected MPC using the density-adjusted
wind speed mean at 90 meters as an input. The bias cor-
rection is motivated by the fact that the original MPC



tends to underpredict power, as can be seen from the solid
red curve in Fig. 5. Such a consistent bias can be easily
corrected by shifting the curve horizontally, to the left
in this case (in the case of consistent overprediction, the
necessary shift would be to the right). The value for the
shift can be chosen by finding the value that minimizes
the RMSE (or any other sensible measure of discrepancy)
of the predictions relative to the data.

We apply this correction in our study since we assume
that any user of an MPC would do so given a sufficient
amount of data, and we treat the bias-corrected MPC as
the baseline. In addition, the fact that we use the lidar—
rather than the nacelle-wind speed data makes the bias
correction even more critical for a fair comparison be-
tween the traditional and our power curve models. The
bias-corrected MPC is shown in Fig. 5 (red dashed curve)
and is close to the data-smoothed curve (in blue), indi-
cating that the correction is reasonable.

The plot in Fig. 7(a) shows that among the five input
sets we considered, the set with just the wind speed mean
at 90 meters (the 1st cluster of boxplots) is one of the
worst performers in terms of the RMSE, regardless of
the model. Moreover, for this input set the bias-corrected
MPC and the statistical models tend to perform equally
in terms of prediction accuracy. This suggests that when
only the 90-meter free-stream wind speed mean data are
available, the main reason to prefer statistical models
over the MPC is the ability of the former to produce
uncertainty estimates associated with predictions.

The comparison of the first two clusters of boxplots
in Fig. 7(a) reveals that adding the 10-minute standard
deviation information at 90 meters results in an aver-
age RMSE reduction of 0.007-0.008 MW, depending on
the model. Reductions of such magnitude are practically
significant considering that they represent the error dif-
ferences in just one given 10-minute period and thus can
add up to a substantial difference over time. These dif-
ferences are also statistically significant (see below) at a
0.1% significance level (indeed, the RMSE was lower as
a result of this addition in each of the 30 experiments).
The impact of adding the standard deviation of the wind
speed to the model is not surprising because it reflects
turbulence in the wind flow, which is an important fac-
tor in power production, as discussed in Section IV. Its
importance can be particularly high when the inputs are
limited only to the measurement at the level equivalent
to the hub height.

To judge the statistical significance of these and other
RMSE differences we report, we computed the bootstrap
confidence interval for the average reduction in RMSE
in a random experiment for each of the models. Specif-
ically, we used the nonparametric bias-corrected accel-
erated percentile confidence interval (BC, CI) method,
discussed in detail in Ref. 48 (see Appendix B for a dis-
cussion on the applicability of the bootstrap methodology
in this context). The bootstrap package in R4 was used
to calculate the intervals. Since we wanted to compare
many pairs of input sets and models, to control for the

rate of falsely declaring a difference between any of these
pairs, we used a very high confidence level of 99.99% for
each comparison, which is equivalent to a 0.01% signifi-
cance level (see Ref. 50).

The REWS (3rd cluster of boxplots in Fig. 7(a)) per-
forms only slightly better than the wind speed mean at
90 meters. Although the average RMSE reduction is sig-
nificantly above 0, it is quite modest, at less than 0.003
MW for all four models. Such a small difference between
the REWS and the 90-meter wind speed mean is due to
the fact that, as discussed in Section IV and shown in
Fig. 6(b), the REWS differed very little from the wind
speed at 90 meters for the majority of observations, which
in turn is the consequence of generally low wind shear at
the site (as shown in Fig. 6(c)).

Using the entire profile of wind speed means (4th clus-
ter of boxplots in Fig. 7(a)), on the other hand, leads to
a considerable and statistically significant reduction in
RMSE relative to using the 90-meter wind speed mean
alone, ranging from 0.02 to 0.04 MW on average (min-
imum reduction across the 30 experiments ranged from
0.006 to 0.03 MW, depending on the model). Adding
the standard deviation profile to the mean profile (5th
vs. 4th cluster of boxplots in Fig. 7(a)) results in very
little benefit, however (the differences are either statis-
tically or practically insignificant). This is most likely
because the mean profile largely captures the turbulence
information contained in the standard deviation profile.

Reducing the PCA-transformed profile of wind speed
means by retaining the top components that together
accounted for 99% of the variance led to using only 3 to
4 principal components (versus the original 12) in each
of the experiments. Such a large dimension reduction
was possible because, as mentioned in Section IV, the
wind speeds at the 12 heights are highly correlated. As
a result, as the comparison of every other boxplot to
the preceding one in the last two clusters of boxplots
in Fig. 7(a) reveals, the dimension-reduced wind speed
profile performs almost as well as the original profile for
each of the models. The mean RMSE difference between
the reduced and the original predictor set is negligible,
ranging from 0.003 to -0.001 MW across the models (with
a negative value implying that the reduced set had the
smaller RMSE, which was the case for RF).

The results are very similar when comparing the in-
put set that also includes the entire profile of standard
deviations to its PCA-reduced counterpart (in this case,
the number of components decreased from the original
24 to 11 or 12). As discussed in Section V, reducing the
dimension of the predictor set can greatly simplify the
fitting of the models, particularly the GPM, so the fact
that very little is sacrificed in terms of performance as a
result of the reduction is highly valuable.

The statistical models tend to perform more or less
equally (the highest average difference was 0.0003 MW
over all pairs of models). The fact that GPM performs no
worse than the other two models is important because,
as discussed earlier, it has the advantage of providing
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FIG. 7. Boxplots of RMSE values (MW) for the 30 experiments described in Section VI using (a) lidar wind speed inputs
(sets 1-5 in the list in Section IVB1) and (b) either nacelle only or a combination of nacelle and lidar wind speed inputs, as
described in the text. The colors represent the statistical models or the MPC as indicated in the legend. The PCA-reduced
versions of each model are denoted with “PCA” after the name of the model. Note that the scales on the y-axis are different

in the two plots.

uncertainty estimates in a much more natural manner
than NN and RF. Given this advantage and comparable
performance to that of NN and RF, GPM may be the
preferred model in this case.

We now consider nacelle measurements as inputs to
the power model. The 1st cluster of boxplots in Fig. 7(b)
shows the performance of the bias-corrected MPC and
the statistical models using the nacelle wind speed mean
as an input. The 2nd cluster of boxplots shows the same
information, but for the input set that also includes the
nacelle wind speed standard deviation. In contrast to li-
dar measurements, there is almost no benefit from adding
the standard deviation of wind speeds to the input set
(the mean RMSE difference is only 0.001 MW for each of
the models). These findings are consistent with those in
Ref. 2, in which the authors found no benefit from includ-
ing nacelle-based TT in the measured power curves. This
is because nacelle-mounted TI measurements are poorly
correlated to free-stream stability®!.

In addition, nacelle wind speed measurements are
much better predictors of power on their own than those
obtained with the lidar, as suggested by much lower RM-
SEs of the former compared to the latter (the mean dif-
ference in RMSE is 0.07 MW for the MPC and 0.06-0.09
MW for the statistical models, and all are statistically
significant), so the benefit of adding standard deviation
information is marginal. The superiority of nacelle mea-

surements relative to lidar ones is due to the fact that the
inflow seen at the nacelle is not well reflected in the lidar
measurements: recall from Section III that even though
of all the heights the 90-meter wind speed means had
the highest correlation and the smallest RMSE relative
to the nacelle means, the RMSE was nevertheless consid-
erable, at 0.84 m/s (Fig. 3 shows the distribution of the
differences between these two measurements).

The discrepancy between the lidar and nacelle mea-
surements is likely caused by the interactions between
the flow and the complex terrain at the wind park (see
Ref. 52 for an example of this phenomenon). We expect
that a location with a simpler terrain will not experi-
ence such a high discrepancy between these two sources
of measurements, and we are currently collecting data to
test this hypothesis.

Although in our study the lidar did not provide a more
accurate power prediction than the nacelle wind speed,
there are several reasons for utilizing lidar in power curve
studies. First, as mentioned earlier, in flat terrain an
upwind lidar should provide accurate measurements of
inflow conditions across the entire rotor disk, in which
case it is expected to improve power prediction relative
to using nacelle-based wind speed measurements at the
hub height only. Second, even in complex terrain, sup-
plementing the nacelle wind speed with lidar measure-
ments at other heights can reduce prediction error. The



last cluster of boxplots in Fig. 7(b) shows the RMSE
values for the input set consisting of the nacelle wind
speed mean and the means measured by lidar in the en-
tire vertical profile except for 90 meters (the latter was
excluded because it is redundant with the nacelle mea-
surement). Compared to the clusters of boxplots with
just the nacelle inputs in the same plot, these tend to be
significantly lower. The addition of lidar measurements
to the nacelle measurement resulted in an RMSE reduc-
tion in each of the 30 experiments for all models, and the
mean RMSE reduction ranged from 0.006 to 0.009 MW
across the models. Third, lidar provides measurements of
additional atmospheric variables, which can significantly
improve power forecast accuracy, as will be discussed in
more detail in Section VIIB.

To illustrate wind power predictions and their associ-
ated uncertainty, we randomly chose one out of 30 exper-
iments. Fig. 8(a) shows the predicted power (circles) and
the associated 95% prediction intervals (shaded areas) for
this experiment’s validation set, obtained with the GPM-
¢ model and using either the 90-meter wind speed mean
alone (red) or the entire PCA-reduced profile of wind
speed means (blue) as inputs. The plot shows prediction
results for each of these two input sets, as well as the
observed power for this validation set (grey triangles), as
a function of the wind speed at 90 meters. The plot in
Fig. 8(b) shows the errors in the predictions (i.e., pre-
dicted minus observed power, shown in Fig. 8(a)) with
the same 95% prediction intervals as in Fig. 8(a), but
shifted by the observed power, just like the predictions.

The point predictions that result from using the en-
tire wind speed mean profile tend to be closer to the
observed values than those using just the 90-meter wind
speed mean, as indicated by their closer average proxim-
ity to the line of zero error, or perfect prediction (solid
grey), in Fig. 8(b): the RMSE is 0.074 MW and 0.097
MW for the former and the latter, respectively, com-
pared to 0.099 MW for the bias-corrected MPC pre-
dictions for this particular experiment. Moreover, both
plots show that the uncertainty estimates corresponding
to the PCA-transformed entire profile (blue) tend to be
more narrow than those corresponding to the 90-meter
wind speed mean alone (red). The average 95% predic-
tion interval length for this validation set is 0.27 MW
(corresponding to an uncertainty of £ 0.135 MW) and
0.36 MW (an uncertainty of £ 0.18 MW) when using the
entire vertical profile and the 90-meter wind speed only,
respectively. This confirms the earlier conclusion that
using the entire profile can markedly improve prediction
quality compared to using just the hub-height wind speed
alone.

Recall our claim in Section IV B that wind shear in-
formation is captured by including the entire profile of
wind speed means in the model, and that similarly, TT
is represented by including both the means and stan-
dard deviations. Fig. 9 suggests that this is indeed the
case. It shows the boxplots of RMSEs for the same ex-
periments as described above, as well as either the shear
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exponent « or the TT added to some of the wind input
sets described in Section IV B 1. While adding shear to
the 90-meter wind speed mean (2nd vs. 1st cluster of
boxplots) leads to a small improvement in RMSEs for all
statistical models, a much more pronounced reduction is
achieved by using the entire profile of wind speed means
(5th cluster of boxplots), including the PCA-reduced pro-
file. This is not surprising since wind shear, which reflects
the shape of the wind’s vertical profile, only partially cap-
tures the information found in the entire profile of wind
speed means. Moreover, as the plot shows, even using
only the 90-meter wind speed mean and standard devia-
tion (4th cluster of boxplots) leads to better results than
using 90-meter wind speed and wind shear. As expected,
adding shear to a full profile of wind speed means (6th
vs. bth cluster of boxplots) does not lead to an improve-
ment in RMSE because the information captured in the
former is already conveyed by the latter.

Adding TT at 90 meters to the 90-meter wind speed
mean (3rd cluster of boxplots) leads to the same reduc-
tion in RMSE as adding the standard deviation at 90
meters (4th cluster of boxplots). However, when the en-
tire profile of wind speed means is used, adding the entire
profile of wind speed standard deviations results in a bet-
ter performance for some of the statistical models than
adding the entire profile of turbulence intensities (8th
vs. Tth cluster of boxplots). Thus, allowing the model to
use the raw means and standard deviations leads to the
same or better results than transforming these to turbu-
lence intensities.

B. Additional atmospheric variables

Here we examine the results for groups of variables that
include inputs other than the wind speed information,
specifically, wind veer, air density added separately to
the unadjusted wind speeds and the combination of the
two (Groups 2-4 outlined in Section IVB2 and listed
in Table II). GPM-c and NN tended to be the best-
performing models in the results shown above and in all
the other groups of variables, so in this section we limit
our discussion only to these two models. Furthermore,
the PCA-reduced versions of all the larger wind profiles
(sets 4 and 5 in the enumerated list in Section IVB1)
tended to perform virtually the same as the original pro-
files for all the groups, so we only show the results for
the former when discussing the larger sets.

Fig. 10(a) shows the percent reduction in RMSE due
to adding wind veer to the model already containing
density-adjusted wind speed inputs (Group 2 in Table IT).
This is the difference in RMSE for the models with and
without wind veer as a percentage of the RMSE of the
latter model, with a positive reduction implying higher
RMSE for the latter model. For all input sets and models,
adding wind veer resulted in an RMSE reduction in every
one of 30 experiments. For the 3 smaller wind input sets,
i.e., those consisting of either only the wind speed in-
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FIG. 8. (a) Predicted power (circles) and the associated 95% prediction intervals (shaded areas) vs. the wind speed mean at
90 meters for a randomly chosen validation set, with predictions obtained with GPM-c model and using either the 90-meter
wind speed mean alone (red) or the PCA-transformed entire profile of wind speeds (blue) as inputs. Also shown are the
observed power values for this validation set (grey triangles). Note that due to the size of the validation set, only a subset
of the validation set is plotted for readability. (b) Wind power residuals (predicted minus observed power) (circles) and the
same 95% prediction intervals (shaded areas) as in Fig. 8(a), but shifted by the observed power. The solid grey horizontal line

corresponds to perfect prediction.

formation at 90 meters or the REWS, the improvement
is substantial, with the median reduction ranging from
22% to 26%. For the 2 larger wind input sets, i.e, those
consisting of the entire wind speed profile information,
the benefit of adding wind veer, although still statisti-
cally significant, is much smaller. The median reductions
range from 11% to 16%. This difference in the impact
is not surprising: as the amount of wind speed infor-
mation in the model increases, it captures an increasing
amount of information conveyed by wind veer, so the ben-
efit of adding it to the model diminishes. Although very
slight, this decrease in benefit is even apparent when the
90-meter wind speed mean is supplemented with the 90-
meter wind speed standard deviation (2nd vs. 1st cluster
of boxplots in Fig. 10(a)).

The percent reduction magnitudes and patterns in
Fig. 10(b) are quite similar to those in Fig. 10(a). For the
3 smaller wind input sets, using air density as a separate
input in conjunction with the unadjusted wind inputs
(Group 3 in Table II) tends to result in a smaller error
than applying the IEC-recommended density adjustment
given in Eq. (1). Thus, when wind speed information in
the model is limited, allowing the statistical model to de-
termine the nature of the relationship between power and
air density and wind speeds is highly advantageous to as-
suming the relationship in Eq. (2): the RMSE reductions

are positive for all experiments, and their medians range
from 22% to 28%. As in the case of wind veer, however,
this advantage is much more modest for the two larger
wind input sets, with median reductions ranging from
12% to 18%. This is most likely because the model in
Eq. (2) is more representative of the reality if the infor-
mation about the entire wind speed profile-rather than
just that at the hub height—is included, so the difference
between the two approaches for including air density in
the model is smaller.

The plot in Fig. 10(c) shows the improvement resulting
from having both wind veer and air density in the model
when these are added to the unadjusted wind speed in-
puts (Group 4 in Table II), relative to using only the
air density-adjusted wind speed inputs. The plot shows
that when the NN model is used, this combination of
inputs tends to have the greatest overall impact of the
three groups of additional atmospheric variables consid-
ered in the study: the median reductions range from 27%
to 31% for the smaller sets and are 21% for the larger
sets. For the GPM-c model, as well as the GPM-ns and
RF models not shown in these plots, the benefit of using
this group of variables is mixed: while the median reduc-
tions tend to be similar to those for the other two groups
(Figs. 10(a)—(b)), the distribution of these reductions is
much wider, so the benefit can be much greater, but also
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FIG. 9. Boxplots of RMSE values (MW) for 30 experiments using lidar wind speed inputs (sets 1, 2, 4, and 5 in the enumerated
list in Section IV B 1, labeled in black on the z-axis) and sets 1 and 4 combined with either shear exponent (labeled in purple
on the z-axis) or TI (labeled in teal on the z-axis). When combined with set 1, only the TI at 90 meters was used, whereas T1

values at all 12 heights were used when combined with set 4.

much smaller than for the same wind input sets in the
other two groups.

C. Caveats

It is important to note several caveats of this study.
First, it involved only one location (and one with a com-
plex terrain) and over a period of only 10 weeks. Thus,
the above results are a starting point and need to be val-
idated with data that cover longer time periods at other
times of year and at other locations with different ter-
rain and turbine types. We are currently acquiring data
at one additional location with a much simpler terrain
than the one discussed here. We expect that the simpler
terrain will alleviate some of the issues we experienced in
the course of this study, such as the large discrepancy in
inflow conditions measured by the lidar and the nacelle-

mounted anemometer. One of many questions that will
be considerably easier to answer as a result of this simpli-
fication is which heights in the vertical profile contribute
the most valuable wind speed and other atmospheric in-
formation for wind power prediction.

Moreover, the analysis was limited to just one turbine
directly downwind from the lidar, while ultimately any
forecasting tool must predict wind power at multiple tur-
bines at a time, accounting for the wake effects and other
spatial and temporal dependencies between them. This
would require adjusting the model, e.g., by explicitly in-
cluding wind direction as an input.

In addition, in this study we explored the relation-
ships between observed values of wind speed and other
atmospheric variables and power output, as our aim was
to better understand the physical processes governing
power output. To incorporate these findings and sta-
tistical modeling framework into a forecasting tool, how-
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air density to the unadjusted wind speed inputs (Group 4 vs. 1). Note that the scale on the y-axis is the same for all 3 plots.

ever, one would use forecasts of the input variables to the
power prediction model. The presence of the forecast er-
ror in the inputs introduces the need for additional layers
of statistical modeling to supplement the framework con-
sidered here. For example, a time series approach, such
as that taken in Ref. 24 to model the horizontal compo-
nents of future wind speed, can be combined with our
power curve model to convert forecasts of atmospheric
conditions into those of wind power.

Another source of error that was not addressed in
this study is the measurement error associated with a
vertically-profiling lidar. This error can be substantial in
complex terrain (up to 10% at the most complex wind
farm sites) due to heterogeneous flow across the sam-
ple volume®®. We are currently refining our approach
by explicitly modeling the uncertainty in the wind speed
inputs that results either from forecast or measurement
erTor.

Recall that we only focused on the range of wind speed
averages that roughly correspond to region II of the stan-
dard power curve, i.e., the section between the cut-in and
rated wind speeds, where the effects of inflow dominate
power production. We did not consider regions I and III
since inflow conditions play a much less important role
in these regions of the curve. A 10-minute wind speed
average value near or below the cut-in speed typically
means that for a substantial fraction of the 10-minute
period the wind speed was below the cut-in value, result-
ing in zero power during that portion of the period (since
by design the turbine will not generate power below the
cut-in wind speed). Thus, forecasting power accurately
in region I is primarily a matter of accurately predicting
that the wind speed is below the cut-in value.

Similarly, as the wind speed significantly exceeds the
rated value, power production becomes increasingly in-

sensitive to the changes in inflow. Instead, the wind tur-
bine control system has a growing impact on power and
determines how close the actual power production is to
the rated power. However, given the appropriate data,
statistical modeling used in this work can be employed
to also include the turbine control system settings as in-
puts to the power curve, so the general framework is still
applicable in this region.

Indeed, the variable turbine response can be a signif-
icant source of power production variability in all re-
gions of the power curve. For example, the yaw error
has been shown to be an important parameter for power
prediction®®. While we did not account for the turbine
effects in this work, as noted earlier, we can extend the
present framework to include these effects and plan to do
so in future work.

In this study we used the RMSE as a metric of perfor-
mance. While it is a simple and obvious error metric to
compute, for some applications it is not as useful as, e.g.,
a metric that reflects the ability to predict ramp onset,
magnitude and duration. Several such metrics have al-
ready been proposed and studied (e.g., Ref. 55), and we
are currently investigating such alternatives.

Finally, it should be noted that using 10-minute aver-
ages may be too coarse to capture certain meteorological
phenomena, e.g., fluctuations in air density. We have
limited 1-Hz data for the site considered in this study,
and we plan to acquire such data at the new site.

VIIl. CONCLUSIONS

Despite the caveats discussed above, in this study we
have illustrated a general approach for building an im-
proved power curve model. The extensions mentioned in



Section VIIC can be accommodated by tuning or gen-
eralizing various aspects of this framework. The results
reveal that expanding the set of predictors beyond the
density-adjusted free-stream wind speed mean and the
use of statistical modeling can lead to substantial im-
provements in the accuracy of wind power forecasts over
the traditionally used power curves.

In particular, wind speed information in the entire ver-
tical profile and wind veer were found to be important
predictors of power output. In addition, adding air den-
sity separately to the unadjusted wind speeds rather than
using the standard IEC-recommended air density adjust-
ment also resulted in more accurate predictions of power.
Since the traditional power curve only accommodates the
density-adjusted hub-height wind speed mean as an in-
put, expanding the set of predictors requires the use of
statistical modeling. However, even if no predictors be-
yond the hub-height wind speed mean are used, statisti-
cal models are still advantageous since they provide esti-
mates of the uncertainty in power predictions.

Results presented here must be validated at other loca-
tions with different terrain and turbine types, for longer
time periods and other seasons, and we are currently ac-
quiring such data. Analyzing them will likely yield new
insights into the importance of various predictors and
thus improve the ability to forecast power even further.
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Appendix A: Additional details on the statistical models
1. Neural network

A neural network (NN, also known as an artificial neu-
ral network, or ANN) is a non-linear regression model
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whose mathematical structure mimics the behavior of bi-
ological neural networks. In particular, if using a single-
layer network, the response Y, such as power output in
our case, is modeled as a linear combination of basis func-
tions ¢;, j = 1,...,J, each of which is a non-linear func-
tion of predictors & (such as those discussed in Section
Iv):

J
V(@)=Y w6 (a). (A1)

We used the default sigmoid function for the basis func-
tions ¢;, whereas the weights w; and the number of basis
functions J were both determined using cross-validation.
The library nnet®® in the R package®® was used to fit the
NN model. See Refs. 39 and 40, as well as the papers
reviewed in Section II, for a more thorough treatment of
NNs.

2. Random forest

Like NN, a random forest (RF) is a regression model.
This method constructs an ensemble of regression trees,
and the individual trees’ predictions are averaged to ob-
tain the final prediction. Different trees are constructed
by first randomly sampling the training data and then
randomly sampling the predictors at each node of the
tree. The library randomForest®” in the R package®® was
used to fit the RF model. Defaults of various parameters
required by the model were used, except for the number
of predictors that are randomly sampled at each split,
which was tuned to minimize the out-of-bag error. For a
more thorough treatment of RFs, see Refs. 40 and 41.

3. Gaussian process model

A general formulation of the stationary Gaussian pro-
cess model (GPM) is as follows:

Y(@) = g7 (2)8+ Z(@), (A2)
where Y is the output, x is the vector of predictors, g is
a user-defined function, 3 is the vector of the coefficients
associated with each predictor, and Z(x) is a station-
ary error process, modeled as a multivariate Gaussian
random variable with 0 mean vector and a user-specified
covariance, given by

Cov(@i, ;) = K(|[z: —a,]))- (A3)

The covariance between any two output values is thus

modeled as a user-specified function K of the Euclidean

distance between their corresponding predictor vectors
x; and x;, [|z; — x|

The above model specification for the output value

Y (x) implies that the joint distribution of the predicted



value Y (Znew) at a new set of input values €peq and the
observed training set values y(x1), ..., y(zn) (in keeping
with the standard practice in GPM literature, we denote
the predictions and the observed values with the large-
case and small-case letters, respectively) is multivariate
Gaussian, while the predictive distribution of Y (@new)
(i.e., its distribution conditional on the observed response
data) is univariate Gaussian. This result is the founda-
tion of GPM prediction inference. See Refs. 42-44 for a
detailed treatment of GPM.

The Gaussian random variable is defined on the en-
tire real number line, whereas power output is bounded
below by 0 MW and above by the rated power (1 MW
in the case of MWT62-1000A wind turbine considered
in this work). Consequently, the power values are first
transformed using a logit transformation, as follows:

P () ) A

Y(x) = log (I—PM

where P(x) is the power value normalized to the rated
power and

P*(x) = P(x)- (1 —2c¢)+c, (A5)

with ¢ a positive constant close to 0. Including ¢ ensures
that the logit in Eq. (A4) is defined for normalized power
values of 0 and 1 since Eq. (A5) results in P*(x) of ¢ or
1 — ¢ when power P(x) is 0 or 1, respectively. The value
of ¢ is chosen so that Y(x) in Eq. (A4) is as close as
possible to the Gaussian distribution.

The GPM is then used to obtain the parameters of
the predictive Gaussian distribution of Y (Zpnew), which
in turn leads to the logit-normal®® as the predictive dis-
tribution of P*(Zpew), i-€., the conditional distribution

of P*(Zpew) given the observed power values. From
Eq. (Ab) it follows that
P*(x) —c
Plx) = ——— A6
()= T2 C (A6)

so the predictive distribution of P(Zpew) is a logit-
normal shifted by ¢ and scaled by 1 — 2c. The point
prediction of power is then the mean of the predictive
distribution of P(€yneq) since this mean is the minimum
mean squared prediction error predictor of P(Zpew). It
is obtained by numerical integration using the logitnorm
package® in R and applying the transformation on the
right-hand side of Eq. (A6). The associated prediction
interval is obtained by computing the appropriate quan-
tiles of the predictive Gaussian distribution for Y (new)
and applying the logistic transformation (the inverse of
the logit) to them, followed by the transformation in
Eq. (A6).

The following covariance function was used for the
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TABLE III. Subsets of inputs used to model the mean func-
tion and the error process (denoted @, and ., respectively)
for each of the five input sets enumerated in Section IV when
a natural spline of order 3 was used for the function g. The
input labels are as in Section IV B 1.

Input set Ton Te
1 ws 90 mean |ws 90 mean
2 ws 90 mean |ws 90 sd
3 ws equiv ws equiv
4 ws 90 mean |ws all mean
5 ws 90 mean |ws all mean + sd
GPM:
ol — g
Cov(x;, x;) = o? [exp ( Z M) +qdi; |,
dy,
k=1
where

(A7)
dy, = range parameter for the kth predictor,
q = nugget and
d;; = Kroeneker delta

(note that this specification is adapted from Ref. 60).
The range (dy, for each k = 1, ..., K, with K denoting the
total number of predictors), the shape (v), the nugget (¢),
and the variance (02?) parameters were estimated using
maximum likelihood estimation. This and other oper-
ations needed to implement the GPM were done using
routine functions available in the R package?®.

Finally, we considered two forms of the mean function
gT(x)B in Eq. (A2), resulting from setting g to a con-
stant or using a natural spline of order 3 (see Refs. 61
and 62) to model it. In case of the former, all the pre-
dictors were used to model only the error process. In the
latter case, we first separated the predictor set & into two
subsets: one used as inputs to the function g, denoted
with «,,, and the other used to model the error process
Z, denoted with ., as indicated in Table III (note that
some predictors were in both sets). We then modeled
power output Y as a function of the input vector & =
(T, xe), as follows:

Y(z) =Y (Tm,xe) = QT(mm)ﬂ + Z(xe),

with the covariance function as in Eq. (A7).

Appendix B: A Note on the applicability of bootstrap
methodology

Bootstrap methodology assumes that the samples are
uncorrelated*®, whereas the RMSEs from the 30 experi-
ments are highly correlated due to the overlap in the data
points used across the experiments for both the training
and validation sets. However, if for each experiment,
we compute the pairwise difference in RMSE (between a
pair of different input sets and/or models), the correla-
tion among them across the experiments will be minimal
under a mild assumption.



If we let R;; and R;2 denote the RMSE values for input
set/model combination 1 and 2, respectively, and A; =
Ri1 — Rjs,t = 1,...,30, the covariance of the pairwise
differences in two experiments i and j is given by

CO’U(AZ‘,AJ‘) = CO’U(R“ — RZ‘Q,RJ‘ — Rj )
= COU(RH, le) - CO’U(RM, Rjz)
— COU(RZQ, le) + CO'U(RZ'Q, Rjg)

(B1)

It is reasonable to assume that the main source of corre-
lation between two RMSEs is the overlap in the points
used from one experiment to another, i.e., that sharing
the same input set and/or model is a much smaller source
of this correlation. In that case, we have that

COU(RH, le) ~ COU(Ril, Rjg)
and (B2)
COU(RZ'Q, Rjg) ~ CO'U(RiQ, le).

That is, although the terms on the left-hand sides of
Eqgs. (B2) are likely higher than those on the right-
hand sides because they share the same input set and/or
model, we expect the difference between them to be
small. It then follows from Eqs. (B1) and (B2) that
Cov(A;,A;) ~ 0. Since the correlation in the pair-
wise differences is minimal, we can apply the bootstrap
methodology to these differences.
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